首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20001篇
  免费   4056篇
  国内免费   1871篇
化学   11775篇
晶体学   270篇
力学   979篇
综合类   141篇
数学   843篇
物理学   11920篇
  2024年   12篇
  2023年   170篇
  2022年   415篇
  2021年   524篇
  2020年   664篇
  2019年   573篇
  2018年   565篇
  2017年   590篇
  2016年   846篇
  2015年   816篇
  2014年   1085篇
  2013年   1833篇
  2012年   1290篇
  2011年   1434篇
  2010年   1113篇
  2009年   1289篇
  2008年   1349篇
  2007年   1509篇
  2006年   1348篇
  2005年   1086篇
  2004年   947篇
  2003年   916篇
  2002年   779篇
  2001年   661篇
  2000年   550篇
  1999年   467篇
  1998年   413篇
  1997年   366篇
  1996年   290篇
  1995年   315篇
  1994年   259篇
  1993年   266篇
  1992年   193篇
  1991年   144篇
  1990年   127篇
  1989年   91篇
  1988年   101篇
  1987年   72篇
  1986年   74篇
  1985年   71篇
  1984年   72篇
  1983年   24篇
  1982年   44篇
  1981年   43篇
  1980年   37篇
  1979年   15篇
  1978年   20篇
  1977年   17篇
  1974年   8篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
陈华俊  朱鹏杰  陈咏雷  侯宝成 《中国物理 B》2022,31(2):27802-027802
We investigate theoretically Rabi-like splitting and Fano resonance in absorption spectra of quantum dots(QDs)based on a hybrid QD-semiconducting nanowire/superconductor(SNW/SC)device mediated by Majorana fermions(MFs).Under the condition of pump on-resonance and off-resonance,the absorption spectrum experiences the conversion from Fano resonance to Rabi-like splitting in different parametric regimes.In addition,the Fano resonances are accompanied by the rapid normal phase dispersion,which will indicate the coherent optical propagation.The results indicate that the group velocity index is tunable with controlling the interaction between the QD and MFs,which can reach the conversion between the fast-and slow-light.Fano resonance will be another method to detect MFs and our research may indicate prospective applications in quantum information processing based on the hybrid QD-SNW/SC devices.  相似文献   
2.
In this study, manganese tellurite (MnTeO3) nanoparticles are developed as theranostic agents for magnetic resonance imaging (MRI)-guided photothermal therapy of tumor. MnTeO3 nanoparticles are synthesized via a simple one-step method. The as-synthesized MnTeO3 nanoparticles with uniform size show good biocompatibility. In particular, MnTeO3 nanoparticles exhibit a high photothermal conversion efficiency (η = 26.3%), which is higher than that of gold nanorods. Moreover, MnTeO3 nanoparticles also have high MRI performance. The longitudinal relaxivity (r1) value of MnTeO3 nanoparticles is determined to be 8.08 ± 0.2 mm −1 s−1, which is higher than that of clinically approved T1-contrast agents Gd-DTPA (4.49 ± 0.1 mm −1 s−1). The subsequent MnTeO3 nanoparticles-mediated photothermal therapy displays a highly efficient ablation of tumor cells both in vitro and in vivo with negligible toxicity. It is demonstrated that MnTeO3 nanoparticles can serve as promising theranostic agents with great potentials for MRI-guided photothermal therapy.  相似文献   
3.
《中国物理 B》2021,30(5):56501-056501
Thermal expansion control is always an obstructive factor and challenging in high precision engineering field. Here,the negative thermal expansion of Nb F_3 and Nb OF_2 was predicted by first-principles calculation with density functional theory and the quasi-harmonic approximation(QHA). We studied the total charge density, thermal vibration, and lattice dynamic to investigate the thermal expansion mechanism. We found that the presence of O induced the relatively strong covalent bond in Nb OF_2, thus weakening the transverse vibration of F and O in Nb OF_2, compared with the case of Nb F_3.In this study, we proposed a way to tailor negative thermal expansion of metal fluorides by introducing the oxygen atoms.The present work not only predicts two NTE compounds, but also provides an insight on thermal expansion control by designing chemical bond type.  相似文献   
4.
本研究探讨3.0T磁共振成像(MRI)结合X线钼靶诊断乳腺恶性肿瘤的价值。采用回顾性研究方法,选取乳腺肿块患者110例162个病灶,给予3.0T MRI及X线钼靶检查。经病理确诊为恶性病变101个;恶性病灶形态不规则、边缘毛刺、时间-信号强度曲线(TIC)类型Ⅲ型和早期增强率≥60%比例明显高于良性病灶(P<0.05),而分叶状比例和表观扩散系数(ADC)值明显低于良性病变(P<0.05);恶性病变X线钼靶表现:形态不规则、钙化、结构不对称和大导管征比例明显高于良性病变(P<0.05);MRI联合X线钼靶诊断乳腺恶性病变的灵敏性、准确性和阴性预测值明显高于MRI诊断(P<0.05)。3.0T MRI检查结合X线钼靶诊断乳腺恶性肿瘤有较好的价值。  相似文献   
5.
We have developed a reliable, fast, and highly sensitive analytical method utilizing dispersive liquid–liquid microextraction and gold nanoparticles probes for ziram (zinc bis(dimethyldithiocarbamate)) determination. The method is based on the in situ formation of gold nanoparticles in carbon tetrachloride as an organic phase. It was found that the trace levels of ziram influenced the formation of gold nanoparticles, leading to absorbance change of a sedimented phase. The results of the colorimetric ziram determination were in the concentration range of 0.12–2.52 ng/mL with a limit of detection of 0.06 ng/mL. The formation of the stable and dispersed gold nanoparticles in the organic phase provides a good precision for dispersive liquid–liquid microextraction method, resulting in the relative standard deviation of 3.8 and 1.2% for 0.56 and 1.58 ng/mL of ziram, respectively. This method has been successfully used for the ziram determination in samples of well and river water, soil, potato, carrot, wheat, and paddy soil.  相似文献   
6.
Solution combustion synthesis (SCS) is a worldwide used methodology for the preparation of inorganic ceramic and composite materials with controlled properties for a wide number of applications, from catalysis to photocatalysis and electrocatalysis, from heavy metal removal to sensoristics and electronics. The high versatility and efficiency of this technique have led to the introduction of many variants, which allowed important optimization to the prepared materials. Moreover, its ecofriendly nature encouraged further studies about the use of sustainable precursors for the preparation of nanomaterials for energy and environment, according to the concept of circular economy. On the other hand, the large variety of expressions to define SCS and the often-contradictory definitions of the SCS parameters witnessed a scarce consciousness of the potentiality of this methodology. In this review article, the most important findings about SCS and the selection criteria for its main parameters are critically reviewed, in order to give useful guidelines to those scientists who want to use this methodology for preparing materials with improved or new functional properties. This review aims as well (i) to bring more clarity in the SCS terminology (ii) to increase the awareness of the SCS as a convenient tool for the synthesis of materials and (iii) to propose a new perspective in the SCS, with special attention to the use of ecofriendly procedures. Part of the review is also dedicated to precautions and limitations of this powerful methodology.  相似文献   
7.
Carbocyclic carbenes (CCCs) are a class of nucleophilic carbenes which are very similar to N-heterocyclic carbenes (NHCs) in terms of their reactivity, but they do not contain a stabilizing heteroatom in their cyclic ring system. In this study, 17 representative known CCCs and 34 newly designed CCCs are evaluated using quantum chemical methods, and the results are compared in terms of their stability, nucleophilicity, and proton affinity (PA) parameters. The results are divided on the basis of ring size of the known and reported CCCs. The stability, nucleophilicity, PA, complexation energy, and bond strength–related parameters were estimated using M06/6-311++G(d,p) method. The results indicated that the CCCs known in the literature are strong σ-electron donating species and have considerable π-accepting properties. This study led to the design and identification of a few new CCCs with dimethylamine and diaminomethynyl substituents which can be singlet stable and are substantially nucleophilic. © 2018 Wiley Periodicals, Inc.  相似文献   
8.
Biomaterial scaffolds are the cornerstone to supporting 3D tissue growth. Optimized scaffold design is critical to successful regeneration, and this optimization requires accurate knowledge of the scaffold's interaction with living tissue in the dynamic in vivo milieu. Unfortunately, non‐invasive methods that can probe scaffolds in the intact living subject are largely underexplored, with imaging‐based assessment relying on either imaging cells seeded on the scaffold or imaging scaffolds that have been chemically altered. In this work, the authors develop a broadly applicable magnetic resonance imaging (MRI) method to image scaffolds directly. A positive‐contrast “bright” manganese porphyrin (MnP) agent for labeling scaffolds is used to achieve high sensitivity and specificity, and polydopamine, a biologically derived universal adhesive, is employed for adhering the MnP. The technique was optimized in vitro on a prototypic collagen gel, and in vivo assessment was performed in rats. The results demonstrate superior in vivo scaffold visualization and the potential for quantitative tracking of degradation over time. Designed with ease of synthesis in mind and general applicability for the continuing expansion of available biomaterials, the proposed method will allow tissue engineers to assess and fine‐tune the in vivo behavior of their scaffolds for optimal regeneration.  相似文献   
9.
Nanoparticles have an immense importance in various fields, such as medicine, catalysis, and various technological applications. Nanoparticles exhibit a significant depression in melting point as their size goes below ≈10 nm. However, nanoparticles are frequently used in high temperature applications such as catalysis where temperatures often exceed several 100 degrees which makes it interesting to study not only the melting temperature depression, but also how the melting progresses through the particle. Using high‐resolution transmission electron microscopy, the melting process of gold nanoparticles in the size range of 2–20 nm Au nanoparticles combined with molecular dynamics studies is investigated. A linear dependence of the melting temperature on the inverse particle size is confirmed; electron microscopy imaging reveals that the particles start melting at the surface and the liquid shell formed then rapidly expands to the particle core.  相似文献   
10.
Superhalogens, owing to their large electron affinity (EA, exceeding those of any halogen atom), play an essential role in physical chemistry as well as new material design. They have applications in hydrogen storage and lithium-ion batteries. Owing to the unique geometries and electronic features of magnesium-based clusters, their potential to form a new class of lithium salts has been investigated here theoretically. The idea is assessed by conducting ab initio computations on Li+/MgnF2n+1-2mOm compounds (n=2, 3; m=0-3) and analyzing their performance as potential Li-ion battery electrolytes. The Mg3F7 cluster, with large electron binding energy (EA of 7.93 eV), has been proven to serve as a building block for lithium salts. It is shown that, apart from high electronic stability, the new superhalogen-based electrolytes exhibit a set of desirable properties, including a large band gap, high electrolyte stability window, easy mobility of the Li+, and favorable insensitivity to water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号